Influence of Corticospinal Tracts from Higher Order Motor Cortices on Recruitment Curve Properties in Stroke
نویسندگان
چکیده
BACKGROUND Recruitment curves (RCs) acquired using transcranial magnetic stimulation are commonly used in stroke to study physiologic functioning of corticospinal tracts (CST) from M1. However, it is unclear whether CSTs from higher motor cortices contribute as well. OBJECTIVE To explore whether integrity of CST from higher motor areas, besides M1, relates to CST functioning captured using RCs. METHODS RCs were acquired for a paretic hand muscle in patients with chronic stroke. Metrics describing gain and overall output of CST were collected. CST integrity was defined by diffusion tensor imaging. For CST emerging from M1 and higher motor areas, integrity (fractional anisotropy) was evaluated in the region of the posterior limb of the internal capsule, the length of CST and in the region of the stroke lesion. RESULTS We found that output and gain of RC was related to integrity along the length of CST emerging from higher motor cortices but not the M1. CONCLUSIONS Our results suggest that RC parameters in chronic stroke infer function primarily of CST descending from the higher motor areas but not M1. RCs may thus serve as a simple, in-expensive means to assess re-mapping of alternate areas that is generally studied with resource-intensive neuroimaging in stroke.
منابع مشابه
Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging.
Electrophysiological and neuroimaging studies suggest that the integrity of ipsilesional and inter-hemispheric motor circuits is important for motor recovery after stroke. However, the extent to which each of these tracts contributes to the variance in outcome remains unclear. We examined whether diffusion tensor imaging (DTI)-derived measures of corticospinal and transcallosal tracts predict m...
متن کاملAssessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke.
BACKGROUND AND PURPOSE Aside from the primary motor cortex, the corticospinal tract (CST) also receives fibers from dorsal and ventral premotor cortices and supplementary motor area, all of which might potentially contribute to motor function after stroke. We sought to quantify the microstructural integrity of CST originating from the hand representations in these 4 motor cortices separately an...
متن کاملLesions to Primary Sensory and Posterior Parietal Cortices Impair Recovery from Hand Paresis after Stroke
BACKGROUND Neuroanatomical determinants of motor skill recovery after stroke are still poorly understood. Although lesion load onto the corticospinal tract is known to affect recovery, less is known about the effect of lesions to cortical sensorimotor areas. Here, we test the hypothesis that lesions of somatosensory cortices interfere with the capacity to recover motor skills after stroke. ME...
متن کاملCan fully automated detection of corticospinal tract damage be used in stroke patients?
OBJECTIVE We compared manual infarct definition, which is time-consuming and open to bias, with an automated abnormal tissue detection method in measuring corticospinal tract-infarct overlap volumes in chronic stroke patients to help predict motor outcome. METHODS Using diffusion tensor imaging and probabilistic tractography, 4 corticospinal tracts from the primary motor cortex, dorsal and ve...
متن کاملQuantified corticospinal tract diffusion restriction predicts neonatal stroke outcome.
BACKGROUND AND PURPOSE Neonatal arterial ischemic stroke occurs in > or =1:4000 births. Many children experience motor deficits but acute predictors of outcome are lacking. Diffusion-weighted MRI changes in descending corticospinal tracts remote from arterial ischemic stroke may represent pre-Wallerian degeneration. We verify and quantify this signal and correlate it with motor outcome. METHO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in neuroscience
دوره 10 شماره
صفحات -
تاریخ انتشار 2016